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The results of an analytical and experimental investigation of heat
transfer in the vicinity of the stagnation point of a disk arranged nor-
mal to the flow and washed by an axisymmetric jet are presented.

In [1] an approximate analytical calculation was
made for the laminar boundary layer between an axi-
symmetric jet and a plate arranged normal fo the
flow, but the stagnation point region was excluded
from consideration. Hydrodynamic investigations of
the boundary layer at the wall [2] have permitted cal-
culation of the laminar boundary layer in the vicinity
of the stagnation point, when the flow must be regard-
ed as gradient flow.

In the case of an axisymmetric laminar boundary
layer with a pressure gradient the momentum equa-
tion may be written in the following form {31:
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where x = ZU,, Z =9%v, § is the momentum thick-
ness, and U'S is the derivative of velocity Ug with re-
spect to 1.

In the region of the stagnation point (according to
the data of [2], this region falls in the range 0 < T =
=< Tyy), the variation of the relative axial velocity of
the jet Ug, taken as the velocity at the outer edge of
the boundary layer, over the radius of the disk, is
determined by the equation

_ ~ .3
Ug=ar—br. @)

The parameters a and b depend on the relative dis-
tance of the nozzle from the plate h and are equal to

—0.22 —0.42

when A<6.2 a=154 , b =05k

The integration of (1) reduces to a guadrature,
since the function F(n) in the interval between the
stagnation point (®y = 0.057, ), = 4.716) and the point
Ty (Mm =0, Am = 0) may be replaced, with a good
approximation, as shown in [4], by the straight line
F(n) = 0.47 — 8n. Then (1) is rewritten as
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The solution is elementary:
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where k = b/a and
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The quantity k¥’ varies in the limits 0 to 0.33. The
function F(kT?) in the range of variation of kr? indi-
cated may be approximated by the expression F(kT%) =
= (1 — k¥%?°-5; then we finally obtain

0.047 d,
Usa (1 —kr

Z= 2)2.41

From the relation between Z and the momentum thick-
ness 4 (Z = 1}‘2/1)), we calculate the momentum thick-
ness

B 0.047d, 1%
&= XTI
U,,a(l — kr )

According fo [5], the thickness of the hydrodynam- .
ic boundary layer is determined by the equation

0/8 = 37/315 —1/945 — 33/9072,

Between the second shape factor v and the first, A,
there is a universal relation [5]

x == (37/315 — 1/945 — A2/9072)% %,

which deviates only slightly, especially in the region
of the stagnation point, from the line » = 0.012A.
Then

37/315 — 1/945 — \*/9072 = (0.012)"* and /8 = 0.1095.

From the last expression, the thickness of the hydro-
dynamic boundary layer is determined as

9
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Fig. 1, Heat transfer coefficient at the stagnation
point: 1) when d; = 40 mm and Re, = 31 000; 2) 31
and 40 000 (authors! data); 3) 16.5 and 10 000 to
30 000 (tests of [8]); 4) 178 and 40 000 to 550 000
(tests of [7]); 5) 6.35 and 7000; 28 000; 56 000
(tests of [6]); 6) according to Eqs. (9) and (10).
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Fig, 2, Variation of local heat trans-
fer coefficients over the disk radius
" in the gradient flow region (0 =T =<
= Tm): a) calculations according to
(7) and (8); b) test data of [6) for h =
=2 (1), 6 (2), and 8 (3); c¢) authors!'
experiments with i = 10,
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Fig. 3. Comparison of test data on mean heat transfer
coefficient in the stagnation point region (0 = T = ry,)
with theory: a) when h < 6.2, A = [Nuy; R/ {Prl/sﬁol'%B x
x[1=(1—R*/30%?) %Y1} 71 [1) when dg= 31 mm, b=
=1.5-6.0 and R = 0.83; 2) 40; 1.5—6.0 and 0.62; 3) 20;
5 and 1.25, authors' experiments; 4) 178; 1.4-2.8 and
0.28, tests of [7]; 5) according to Eq. (11); b) when h >
>6.2, A=[Nu, ﬁz]/{Pr1/3H°'63[1_— (1 - 2.92RY/n 42y
[6) when d; = 31 mm, h = 8-24, R =0.83; 7) 8; 35 and
3.12; 8) 12; 13 and 2.08, authors? tests; 9) 16.5; 8 and
0.5, tests of [8]; 10) 88; 8 and 1.5, tests of [9]; 11) ac-
cording to Eq. (12)].
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To find the heat flux at the wall qy and the heat trans-
fer coefficient o we use the obvious equality

G = — A (0/09)ymo = & (ty — L),

a=—1 ( g; )y=0/ (to— ). )

This requires a knowledge of the temperature distribu~
tion in the boundary layer, which, for constant tem-
perature of the whole surface of the disk, we assign in
the form of a polynomial of fifth degree

oY

t=a+by4cy® +dy* +est + 1o (6)

To find the constants in (6), we use the boundary con-
ditions

when y=0 t—t,, &y =0
wheny =38, t=t,, 0foy=0, 0%/0y" =0, Fyldy*=0.

Using these conditions, (6) may be written in the form
=ty 1) (2.5 y/8, — 5 /8] + 5 44181 — 1.5 5°/63).

We shall evaluate the temperature gradient at the wall,
(8t/8y)y=0> and substitute it in (5) to get @ = 2.5 A/t

In order to interrelate the thicknesses of the ther-
mal and hydrodynamic boundary layers, we shall use
the relation derived for longitudinal flow over a uni~-
formly heated plate, 6/6 = 1/1.026 Pr%?,

Thus, the distribution of local heat transfer coeffi-
cients over the disk radius in the vicinity of the stag-
nation point (0 < T = Tp,) will be

13}»(1

0

P’*R"=(1—kr)-,

or, in dimensionless form,

Nug= 132" Pr” Rey* {1 — &r }

Substituting the values of ¢ and k in the last equation,
we obtain the distribution of local heat transfer coef-
ficients as a function of h:

when 4 <62
_2 _02 12__—0.11
Nu = 1L6P% Rey* (1738 ) 8 . @)
when 4 > 6.2
2 L1, 2_—0.77
Nup = 5.25 Pr** Rey(1 —2.997 /% ) . (®)

Letting r = 0 in (7) and (8), we obtain the values of
the heat transfer coefficient at the frontal point:

—0.11

when 7 < 62 Nu,=1.6Pr" Ref*n , (9)

__—0
when#>62 Nu, = 5.25Pr" Rel/*7 (10)

If the disk is entirely located in the region R = rm,
where when 4 < 6.2 7, =d, "' and when © >62 r, =
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-- 0.34d,#"", then the mean heat transfer coefficient
over the disk is found from the expression

R
— 1
9 ==

"E; § 2 e rdr,
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or, after integration,

0.59 2
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Replacing a and k in the last expression by their val-
ues, we finally obtain

when 7 < 6.2 Nu,=2.16Pr" Re,” x

[ :[_32 ARGl .
x[l—(l— _02) ]Z‘)Tg , (11)
when & >6.2 Nu, = 0.815Pr " Rey*
_2 22
x[l—(l—%%?») JhmR 12)
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The experimental investigations were carried ouf on
equipment for which a diagram and construction de-
tails were given in [2]. In investigating the local co-
efficients at the stagnation point, use was made of the
fact that when T < 0.5 Ty, the velocity Ug = ar,
while the mean heat transfer coefficient deviates
negligibly from the local coefficient. Therefore, to
determine the local heat transfer coefficients, a com-
pensating heat transfer element, blown upon by noz-
zles dy = 20 and 30 mm in diameter was located at
the frontal point at the center of the disk,

The results of the tests are shown in Fig., 1. Also
presented are the test data of [6—8], which show sat-
igfactory agreement with the theoretical curves ac-
cording to (9) and (10). The tests embrace the range
of variation Re, = 7000-550 000,

Comparison of the theoretical relations (7) and (8)
with test data of [6] (Fig. 2) shows that there is good
agreement when h < 6,2, For larger h the divergence
of the test data of [6] from the theoretical relation (8)
reaches 15%.

The correlation in Fig. 3 spans a wide range of
variation of Rey = 3800-550 000 and h = 1,4~24, The
average scatter of the test data does not exceed 15%.

NOTATION

dy—nozzle diameter; r—variable disk radius; r,—distance from
disk center to point corresponding to maximum value of axial velocity
(stagnation point region); R—radins of disk; h—distance from nozzle
to heat wransfer surface; t = r/dy—~reduced variable radius; R = R/dy—
dimensionless disk radius; b = h /dy—relative distance from nozzle to
disk surface; ty—temperature of surface; t,— temperature outside
boundary layer; Ug—velocity at outer edge of boundary layer (axial ve-
locity of jet); Ug—discharge velocity; ﬁs = Ug/Uy— dimensionless veloc-
ity at outer edge of boundary layer; a—local heat transfer coefficient;
‘a—mean hear transfer coefficient; Rey = Uydy/v—Reynolds number;
Nug = ady/A—Ilocal Nusselt number; Nup = ady/A—mean Nusselt num=
ber; Nuyg—Nusselt number at stagnation point,
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